
Technical Report

AD-A244 294 CMU/SEI-91-TR-29

A Critical Review
of the Current State DTIC
of IPSE Technology M LECIE

Alan W. Brown JAN I19

October 1991

MU- oN Mr-A- EMI

I-A~tui, nUnumnd

92-01246
xi i lIII I II!

The following statement of assurance is more than a statement required to comply with the federal law rhis is a sincere statement by the unversity to assure that all

people are included in the diversity which makes Carnegie Mellon an exciting place, Carnegie Ml lorn wishes to include people wmlhOut regard to race, color. nationAl
orign.'sex, handicap, religion, creed, ancestry. belief, age, veteran status or sexual orientation

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to dscrmtnato in admis ons and employment on tne bass of race
color, national origin, sex or handicap in violation of Title VI of the Civit Rights Act of 1964, Title IX of the Educational Amendments f 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. In addition. Carnegie Mellon does not discriminate in admissions and employment ou.
the basis of religion, creed, ancestry, belief, age. veteran Status or sexual orientation in violation of any federal, state, or focal laws or executive orders Inquiries concern

ing application of this policy should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) M 6684 or :I
Vice President for Enrollment, Carnegie Mf,;ion University, 5000 Forbes Avenue, Pttsburgh, PA 15213, telephone (412) 268 2056

Technical Report
CMU/SEI-91-TR-29

ESD-TR-91-29
October 1991

A Critical Review
of the Current State
of IPSE Technology

Alan W. Brown
Software Development Environments Project

Approved for public release.

Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

ThA ideas and findings in this report should not be construed as an official
DoD position. It is published in 'he interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Charles J. Rya ,Ma

SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.

Copyright 0 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTlC provides access to and transfer of
sientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly. National Technical Information Service, U.S Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents

1 Introduction 1
1.1 What is an IPSE . 2

2 Reasons for the Lack of IPSE Use 5
2.1 IPSE Achievements 5
2.2 IPSE Shortcomings 6

3 Alternative Solutions 9

4 Where is All the Money Going? 13

5 Key Issues for the Future 15

6 Summary 19

Accession For
NiTIS GRA&I

DTIC TAB

uniciiconced (i

cal

CMU/SEI-91-TR-29

CU/S El-91- T R-29

Chapter 1

Introduction

"We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time."

T.S. Eliot, Little Gidding.

Abstract: In the past ten years there has been a great deal of interest in the concept
of an Integrattd Project Support Environment (IPSE) as a complete, unifying framework of
services supporting most (or all) phases of software development and maintenance. In this
paper we evaluate the current state of research work in this area, suggest some reasons for
the relative lack of success, and make proposals for ensuring measured progress in the future.

The concept of an Integrated Project Support Environment (IPSE)1 was developed in the late
1970's and early 1980's in response to a recognition that the traditional notion of a set of program
development tools (editor. compiler, debugger) is only a small :omponent of a much larger set

of facilities required to coordinate the many tasks involved in large-scale software production.
While various descriptions of many of the concepts are available, in many ways the seminal
work on IPSEs and IPSE architecture is the Stoneman report[6, 7J defining the architecture of
an Ada Programming Support Environment (APSE). Attempts at defining an architecture for

a project support environment have been greatly influenced by this work. In that report a basic

'Also variously called a Software Development Environment (SDE), Software Engineering Environment (SEE).

and Integrated Software Factory (ISF).

CMU/SEI-91-TR-29 I

"onion layer" architecture was defined with kernel support at the center (operating system and
database services), a minimal toolset surrounding that kernel (essential support tools such as
an editor, compiler and debugger), and an outer layer of further tools (specific tools to tailor
the environment to different software development techniques). While decentralized approaches
are now being examined, the Stoneman approach has been the touchstone for much subsequent
work.

It has now been more than 10 years since Stoneman. It is high time that we stood back
and evaluated the current situation with regard to IPSEs and IPSE technology, the lessons
learned, the progress made during the 1980's, and the likely directions for the 1990's. Among
the questions we should ask are:

" How much progress has been made since Stoneman?

* What are our experiences after this time?

" What lessons have we learned about good and bad approaches to IPSEs?

" Where is much of the current research effort being applied?

* What do we see as the key issues for the future?

In addressing these questions we draw together a number of important issues that are currently
the topic of much discussion both ir, Europe and the US concerning the likely direction of work
in the field of computer support for software development. Hence, we hope to point the way
forward for future work in this important area of software engineering.

We begin by examining some of the reasons for the relatively slow take up of IPSE technology in
the commercial world, then turn our attention to alternative solutions which have seen greater
success. We then briefly highlight the main areas of IPSE research currently being pursued,
before concluding with an analysis of the key issues for the future.

1.1 What is an IPSE?

For the purposes of this paper, we distinguish two classes of approach towards computer-based
software development support, based on the definitions given in [21].

The first class, which we refer to as Integrated Project Support Environments (IPSEs), can
be seen as the direct descendents of the Stoneman work. The primary aim of these systems
is to investigate environment infrastructure technology by concentrating on the definition of
an environment framework. The majority of the work in this area has explored the common
services that need to be provided by such a framework, and the consequent interaction between
the framework and tools which are embedded within it.

Two concepts are of particular interest here:

2 CMU/SEI-91-TR-29

" We can distinguish between the IPSE as a framework of common services, and a "populated
IPSE" (i.e. the IPSE together with its embedded tools). One IPSE framework may be
populated with different sets of tools to suit different software development needs.

" The IPSE framework (implicitly or explicitly) supports some notion of a software devel-
opment process. By the very nature of its architecture, the IPSE will make some models
of the software development process easier or more difficult to support. In some cases, a
single, well-defined software process is built into the IPSE framework from the outset. In
other cases there is more flexibility over the development process supported.

The second class is the Computer-Aided Software Engineering (CASE) tool approach. Here,
driven by market needs, simple software development tools have been enhanced to provide more
comprehensive services for data management, better user interface facilities, and increased tool
functionality.

There are two notable trends in the CASE tool world:

" In recent years the range and availability of tools has increased greatly. Tools now cover
some aspects of multiple stages of software development, from requirements elicitation
through to system maintenance.

" As users have gained experience with CASE tools they have seen the need for combining
individual tools to cover more (or all) of the software development life-cycle. Two ap-
proaches to integration of CASE tools have been attempted - ad hoc integration through
filters, pipes, and transfer protocols, and "vendor pacts", where CASE tool vendors share
knowledge of their tools to allow them to work together in the hope of increasing their
market share. The term "integrated CASE (iCASE)" is sometimes used in any, or all, of
these situations.

In the remainder of this paper we concentrate on the use of IPSE technology, the reasons for its
relative lack of success, how it compares to the more commercially active CASE market, and
how future research should focus on a number of key areas in order to ensure maximum le'erage
from the large body of expertise and knowledge gained from existing work in IPSE teLtiology.

CM U/SEl-91-T I-29 3

.1 CM U T/S El-91- T R-29

Chapter 2

Reasons for the Lack of IPSE Use

It is not being overly dramatic to say that IPSEs and IPSE technology are not currently being
used in anywhere near the number of cor-mercial organizations that were envisaged at the start
of the 1980's. What is more, the development and acceptance of IPSE technology has taken much
longer than was expected. For example, the vision of the UK Government-funded Alvey program
in the early 1980's was that the Information System Factory (ISF), employing knowledge-based
techniques in the support of all aspects of computer system development, would be in place
within the first few years of the 1990's. Clearly, this will not be the case.

2.1 IPSE Achievements

It is wrong to believe, however, that no progress has been made at all. Significant achievements
have been recognized through the IPSE work that has taken place over the last decade. Here
we choose to highlight two of those achievements:

" A major focus of IPSE research has been in the area of data management support for the
large, complex set of data items that typically must be recorded and controlled[3, 1]. Fol-
lowing initial attempts at using commercially available database systems as IPSE repos-
itories, the problems encountered have resulted in detailed examinations of IPSE data
management requirements, leading to enormous activity in the database world to address
those requirements. This has produced definitions of new IPSE data models[9], initiated
development of the field of Object Management Systems (OMSs) for IPSEs[12], and pro-
vided a major catalyst for work in the area of object-oriented databases (OODBs)[4].
Indeed, support for computer-aided design (CAD) in general, with IPSEs as a particular
class of CAD system., has been at the very heart of the current revolution in database
technology.

" The main aim of an IPSE is to represent and support ome notion of a software development
process. Initially, the process supported was implicitly embedded in the IFSE through the
choice of available tools, and the restrictions placed on their interconnection. Much of

C NI U/SEI-91-TR-29 5

the IPSE work in the past few years, however, has been in attempting to make process

notions more explicit, user-definable, and executable[19, 18]. Understanding, modeling,
and automating the software development process is also currently a very active area of

software engineering research in general[14]. This work, whiie motivated by many factors,
has both drawn from, and fed into the work on IPSEs. Certainly, the insights gained
through IPSE work have been of great benefit to this field, improving our understanding

of the software development process and how to support it.

2.2 IPSE Shortcomings

Based on reported IPSE user experiences and our knowledge of the IPSE field gained from
talking with fellow IPSE researchers, end users looking for suitable IPSE and CASE techn,.ogy,
and third party tool developers, we can see a number of reasons why IPSEs and IPSE technology
are not in widespread use. The most important of these reasons appear to be:

1. Little documented evidence of the cost effectiveness of IPSE technology.

There have been successful examples of the use of IPSE technology. However, there is very
little publicly available and reliable data describing what technology was used, how it was
chosen, what problems it addressed, and what measurable benefits were obtained. There
are obvious reasons why-commercial confidentiality, lack of time to write up results,
reluctance to write about failures as well as successes, and perhaps, a lack of fora for
discussing "real" user experiences However, one of the major problems in this area is
both the lark of suitable data on which to perform such analyses. and the lack of suitable
meters with which to measure changes in productivity. Figures such as "a 12-fold increase
in productivity" can often lead to long debate on what is being measured, how it is
being measured, and what the new values are being compared to. For example, with
the SAFRA report[17], it is tempting to conclude that the large gains in productivity
that are claimed are more a result of changes in working practices and general software
process improvements that accompanied the introduction of the IPSE technology than a
consequence of the IPSE technology itself. This is not to say that the IPSE technology
was without vaiue: rather that it constitutes only part of a larger change in culture.

It may be difficult to document the experiences of using IPSEs, but without a body of
evidence to back up the case for IPSE technology many commercial companies will be
unable to justify making an investment in the technology.

2. The size of IPSEs.

In general, an IPSE is attempting to manage a large, complex set of problems in software
development. This leads to IPSEs iLhemselves being large, complex software systems.
There are important consequences of this:

* They are ihevitably costly to purchase, maintain, and use, with possibly a large in-
vestment required in new hardware on which to run the IPSE. training of staff, con-

sultancy fees, and upgrades to the system as new releases of the IPSE infrastructure
and its tools are produced.

6 CMUI/SEl-91-TR-29

" Their size, complexity, and relative newness can result in instability in IPSE oper-

ation, manifesting itself in poor design, slow performance, low availability due to

system crashes, and so on. Users may often find themselves in the position of being

one of only a small number of customers using that IPSE, with the uncomfortable

feeling that they are debugging the IPSE for its developers.

" A complex piece of system software such as an IPSE requires technical support staff

to monitor, tune, and adjust its operational parameters increasing the cost of using

the IPSE.

" There will inevitably be some effect on the software development processes employed

by an organization through the introduction of this new technology. Just the time

needed to become familiar with an IPSE may mean that initially productivity actually

decreases before (hopefully) increasing above previous levels. More often, however,

the introduction of IPSE technology is seen as part of a larger program in software

process improvement[14], when it is "ll too easy to either expect too much of the

technology supporting the process changes, and to blame the technology when the

changes do not keep to plan.

3. Lack of flexibility.

The ideal of providing a tailorable, configurable IPSE which is customized as necessary

for different organizations, projects, and individuals is in reality a long way from current

practice. The more usual situation is that the IPSE provides services through a fixed set

of tools, with at best the possibility of new tools being added by referring back to the

IPSE builders (e.g. ISTAR[8] and ECLIPSE[2]). Such inflexibility is a great drawback to
the use of IPSEs across different commercial organizations in the different development
processes they employ, as well as within a single commercial organization which employs
different development processes for different projects.

4. Concern about long-term investment.

The IPSE market is very volatile at present, with new ideas, approaches, mechanisms, and

techniques being announced quite regularly. For commercial organizations contemplating

using IPSE technology, they are naturally greatly concerned that they make the "right"

choices. This is hampered at present by confusion surrounding the technology and its

advantages and disadvantages. A major aim of much recent work has been to help with
the necessary analysis and comparison of the many possible approaches, techniques and

mechanisms (for example, the European Computer Manufacturers Association (ECMA)

reference model for Computer-Assisted Software Engineering Environments[10]).

Perhaps the greatest problem in this area involves the issue of standards. As is often the

case, the idea of standards is attractive to commercial organizations (both vendors and
users) as it leads to thoughts of portability, compatibility, larger market share, extended

product life-time, and so on. Unfortunately, in the IPSE world there is still much debate
over which areas of IPSE technology should be standardized, whether the time is right

for standardization in those areas, which existing standards are most appropriate, and
what new standards should look like. Many commercial organizations would prefer that
some of these issues were closer to being resolved before making their decisions about

C MU/SEI-91-TR-29 7

what technology to use. Indeed, there is also the argument that the best standards are
those that evolve naturally through a process of "natural selection". However, this is oniy
possible when a range of competing systems are used over an extensive period of time
which is not yet the case for IPSEs.

In summary, we recall that the main focus of IPSEs is the infrastructure in which the development
tools can be embedded. Through the definition of appropriate services within the infrastructure.
IPSEs hope to provide increased tool portability, improved tool integration mechanisms, and
a single approach to common development activities. However, in practice we see that these
advantages can often be nullified by a series of pragmatic issues. We have highlighted a few of
these, including the strategic nature of the purchase of IPSE technology, the high cost of pur-
chase, the probable changes required to existing working practices, and the lack of documented
evidence of successful projects.

One more point to note is that IPSEs are often purchased by software managers for use by end
user developers. If this process is badly managed, there will inevitably be end user resentment
and frustration at the imposition of the new technology. This can only be overcome by ensuring
that the IPSE is introduced as supporting the existing development processes, and with the
cooperation and understanding of the eventual end users.

S ('M U/SU-91-TI-29

Chapter 3

Alternative Solutions

While the introduction of IPSE technology has been very limited in scope, the purchase and
use of individual CASE tools has been widespread. Many commercial organizations have exper-
imented with automated software development tools. While initially these tools were aimed at
the implementation phases of software development (coding, debugging, version control), more
recently there has been rapid development of tools addressing other aspects of software devel-
opment. For example, there are now many tools which address some aspects of system design,
data modeling, and management support. Such tools are typically classed together under the
often-used term "CASE tool". We can refer to commercial organizations that use CASE tools
in this way as "first generation" CASE tool users.

As the use of such tools has grown, there has been increasing interest in ways of combining
CASE tools to support more of the software life-cycle. This "second generation" of CASE tool
users has experienced the advantages of individual tools, but now requires tools which work in
combination. What many commercial organizations are doing is buying collections of CASE
tools and "glueing" them together in the best way they can, rather than move to an IPSE
solution. The "glue" is provided through a common set of data definitions used between the
tools, use of a common data transfer protocol, or through the writing of individual conversion
routines to link the tools used by the organization. The term "integrated CASE (iCASE)'" is
often used in this context. There are, of course, many obvious disadvantages to this inflexible,
piecemeal approach to tool integration. However, the popularity of this approach has a very
pragmatic rationale:

9 It provides what is often seen as a relatively low cost approach to integrated tool support
(although in practice this cost can be high). One of the main drawbacks of IPSE technology
is its high cost. Following a CASE tool approach provides not only a low cost entry point
into the technology, but also the possibility of developing the CASE tool environment
through incremental investment in new tools.

* The investment that is made is seen as being easier to justify. Most of these commercial
organizations have already made some investment in CASE tool technology. This route
to integrated support appears to be more incremental. and is acceptable because. in gen-

CMU/SEI-91-TR-29 9

eral, the approach employs simple, well understood technology with much less demand on
hardware and administrative costs. Also, the range of CASE tools and CASE tool vendors
means that there is more competition for business, and less reliance on a single supplier.

With IPSE solutions the technology is complex, and in many cases the users of the system
have a very limited understanding of how it works. This can lead to resentment, frustration,
and a poor attitude to its use. In contrast, CASE tools are often (in principle) deceptively
simple. The technology is not seen as "getting in the way" as they are easier to understand,
manage, and control.' The overall feeling is that the purchasing organization is "more in
control" of the processes of purchasing, developing, and using the environment.

" For most software systems the end-user organization is also responsible for systems ad-
ministration, and, in particular, the task of systems integration. This is seen in two ways.
First, from a technical view, the tool must be integrated with other tools that are in use.
At its most basic this could be ensuring the tools run on the same operating system, or use
the same window manager. For CASE tools the integration technology, while providing
only low levels of tool integration, involves skills that are more readily available to the end-
user organization (e.g. UNIX expertise). For IPSEs, the complex infrastructure services
often make tool integration a much more specialist task. Second, from a process view,
the tool must be integrated into the organization's software development procedures. The
piecemeal approach provided by individual CASE tools can offer a great deal of flexibility
in this regard. In IPSEs the process definition mechanisms are often either fixed to a single
pre-determined approach, or are sufficiently complex to require specialist support to make
use of them.

* In some ways many of the CASE tools can be seen as rather unambitious in their aims.
However, they are seen as tackling the obvious and most pressing needs of many commercial
organizations - version control, documentation support, and structured design method
support. It may well be a situation in which the organizations must learn to walk before
they attempt to run! The work by Watts Humphrey and others(14] defining a series of levels
of understanding of the software development process within commercial organizations
certainly supports this point. The vast majority of the organizations examined were seen
to be at the lowest level of understanding, or "maturity".

This leads to two schools of thought with respect to IPSE technology - either the in-
troduction of complex technology to support a poorly understood software development
process will rarely prove to be of benefit, leading instead to support for an automated,
ill-defined software development process, or the more process-mature organizations do not
necessarily require any more sophisticated development tools than the less mature ones, as
they are able to make better use of those tools in a development process that is monitored,
controlled, measured, and repeatable. Both of these cases emphasize the secondary role of
IPSE technology.

In this situation, perhaps simple solutions taken in small, well defined steps are the most
effective. It is certainly difficult to believe that revolutionary steps such as the purchase
of an IPSE will. in themselcs, be effective.

As users of some of the large CASE tools will know, the perception of ease of management and use of CASE
tools is not always borne out in practice!

10 CMU/SEI-91-TR-29

In summary, we note that on most occasions the purchase of a CASE tool is not seen as a
strategic decision, but more as a pragmatic one. For example, it is often found to be easier to
obtain money and management support for purchasing a new CASE tool, or integrating a set
of CASE tools, than for investing in IPSE technology. This is due to the incremental nature of
the investment, the more visible improvements in productivity they often bring, and tile more
manageable complexity of the new software.

('MV/SEI-91-TR-29 11

12 C U /S El-91- T R-29

Chapter 4

Where is All the Money Going?

It can certainly not be claimed that the lack of progress in introducing IPSE technology to
industry is due to a lack of investment in the technology. In fact, the amounts of money being
made available to work in this area are quite astounding. Examples of past and current expen-
diture on IPSE technology development may be illustrated with examples from the Government
sponsored research taking place in Europe and the USA: 1

" The UK Government funded Alvey program part-funded three parallel IPSE projects -
Aspect, ECLIPSE, and IPSE2.5. The total investment was in excess of 20 million pounds.
The focus of this work was primarily on the data integration technology required for an
IPSE, investigating the use of file based, database, and knowledge based system technology
as the basis of an IPSE.

" The European Commission has funded, or part-funded, a number of IPSE related projects
under its ESPRIT programs, many of which are on-going. Examples include the 400 million
dollar Eureka Software Factory (ESF) project, the estimated 600 man-years of effort on
Atmosphere, and 200 man-years on ARISE. In all three of these projects the work taking
place involves large consortia of different industrial/academic institutions, in a number of
countries. As a result, the work itself tends to be very diverse in nature. However. one of
the main foci of the much of the work is a concentration on process support mechanisms.

" In the U.S. there have been a number of government related initiatives. Notable amongst
them are the Ada Programming Support Environment (APSE) work (individual projects
sponsored by the Army and Navy) at a total cost of approximately 100 million dollars and
the software development environment work carried out as part of the DARPA funded
STARS program estimated at 75 million dollars. While the APSE work was focused
directly on support for Ada software development, the STARS project has very extensive
goals, aiming to develop a large, generic frameworks suitable for supporting a wide range
of computer system developments.

'One point to note is the scale of some of these projects, involving a large group of people, from many companies
and universities, often from different countries. This leads to communication difficulties, coordination problems,

and inevitable political manoeuvrings within the projects.

CMU/SEI-91-TR-29 13

A target of much of the European research effort over the past ten years has been the work
on the Portable Common Tools Environment (PCTE) and its related projects, and in the U.S.
on its counterpart, the Common APSE Interface Set (CAIS), and its derivatives. These large
initiatives have attracted (and continue to attract) much attention and a great deal of the
research effort and funds.

However, given the earlier discussion on the reasons for a lack of widespread use of IPSE tech-
nology, we are inevitably drawn to the conclusion that the emphasis of much of the current IPSE
research is misguided. In particular, we would suggest that IPSE research in the following areas
would be useful:

" Smaller, user-oriented, application-led projects.

This would enable user requirements to be more clearly identified, and specific solutions
examined in detail.

" Gaining extensive experience with existing tools, toolsets, and IPSEs.

This would not only increase awareness of existing good practices, but would also allow us
to collect data on productivity and quality using existing approaches, and enable further
work to take place in developing suitable metrics for this field.

" Evolutionary approaches rather than revolutionary.

It is important to realize that the acceptance and use of IPSE technology may be as much
based on pragmatic issues as on technical ones, with the result that the more intellectually
appealing, and technically demanding, solutions are not necessarily those that will be most
beneficial to users in practice.

" Widening the appeal of work on IPSEs.

At present there is an ideological split between those working in the the area of real-time,
embedded systems such as avionics, and those in the data processing and information
systems world. In the past IPSEs have been targeted more towards the former, rather
than the latter market. It is clear that there is much to learn from the commercial CASE
tool world, with the hope that both markets will be served by the resultant architectures,
methods, and tools. Building on the experiences of both these fields could provide the
basis we require.

14 CMU/SEI-91-TR-29

Chapter 5

Key Issues for the Future

Having highlighted some of the reasons for the lack of widespread IPSE use. we now look at
what we believe will be major issues for the future in attempting to resolve the current situation.
While there are clearly many issues on which we could focus, in this discussion we choose to
address some of the issues that we believe are not currently seen as being crucial to future
progress, but that we forecast will be of vital importance.

A return to the IPSE users' requirements.

There remains a certain lack of focus in current IPSE work which we believe can be traced
directly to a lack of understanding of the different IPSE users and their requirements. We
are now at an appropriate point in IPSE understanding at which to return to the potential
IPSE users to discover why they are not adopting the technology currently available. There
certainly appears to be concern from those skeptical of the value of IPSE research that
the work has concentrated too much on the technology per se, without sufficient regard
for the areas in which the most leverage can be obtained from using such technology.

In particular, it appears that the gap between IPSE researchers and potential IPSE users
is growing. Some people believe, for example, that the large, Government-funded, collab-
orative research projects are in danger of becoming too far out of step with user needs[13].
Similarly, this issue was also a major focus of a recent workshop looking at the possi-
ble convergence of the PCTE and CAIS proposals[15], with some participants concluding
that there was a real need for much more work to establish concrete, low level end user
requirements before the work could progress.

A second issue is that the level of requirements definition in the past has often as-
sumed particular technical solutions. For example, both the Requirements and Crite-
ria (RAC) document[16] for the Common APSE Interface Set (CAIS), and its European
counterpart[1l1] (EURAC) for the Portable Common Tools Environment (PCTE) were pro-
duced after their respective system definitions had been produced, and were an attempt
to influence that definition's future direction. At a more fundamental level, it remains be
established that the technical solutions provided really do meet the end users' needs.

CM U/SEl-91-TR-29 15

Running counter to this, of course, is the argument that users often do not know or fully

understand their requirements in this area. This highlights the need for an intelligent

approach to requirements elicitation and analysis, and for the incremental development

and introduction of IPSE technology into an organization. Hence, it is the role of the

IPSE designers and researchers to ensure that their vision for the future is tempered by

the IPSE user's current reality.

" An understanding of the process as a precursor to the introduction of solutions.

This quite obvious point is very often overlooked. However, it must be emphasized that

IPSE technology is not a replacement for well defined, visible software development proce-

dures - it merely supports those procedures. As Humphrey's work on software conformance

levels[14] has shown, the level of understanding of software processes within many com-

mercial organizations is particularly low. While an IPSE can help support a process when

it is in place, it is not a substitute for sensible development procedures. Many compa-

nies are beginning to recognize this, and a number of companies are actively involved in

defining and administering so-called "process improvement programs". The result of this
work may not only be companies who better understand the way in which they develop
software, it may also lead to a better understanding of tile software development process
itself. This will feed directly into the process modeling aspects of IPSE technology.

* Useful models for understanding IPSE technology.

One of the main barriers to greater acceptance of IPSEs is the confusion and misunder-
standing surrounding the whole area. Part of the reason for this is that we have not had
sufficiently detailed, yet generally applicable models of IPSEs with which to explain, rea-
son, understand, and teach. The Stoneman model, useful as it was at the time, provides
too coarse a model for any detailed work. In addition, the models that have been defined
(such as the Stoneman model) have IPSE developers as their primary audience. Other key
users (such as tool integrators and IPSE end users) have to a large extent been ignored.

Very recently this problem has started to be addressed in a number of ways. In particular.
we can highlight two approaches. First, a reference model for analyzing and examining
existing and proposed IPSE solutions has been proposed and accepted by the European
Computer Manufacturing Association (ECMA)as an approved technical report[10]. This
provides us with a mechanistic view of the current systems. Second, recent work [22, 20.

5, 21] has looked at the key issue of integration within an IPSE and proposed measures
for different aspects of the integration. This provides a semantic view of the integration
requirements of an IPSE system. These approaches are complementary, and both are useful
and helpful in providing us with a better understanding of the complex issues involved in
this field.

However, there is one further view of integration which has yet to receive significant at-
tention -- a process view. This third approach addresses the integration of tools within
an organization's existing software development process. No generally applicable models

are currently available in this area.

16 CMU/SEI-91-TR-29

An evolution towards federated architectures.

In characterizing work on computer-based support for software development we see that
while IPSE technology has concentrated on the framework services., CASE environments
have emphasized the individual tools. There are obvious grounds for believing that future
systems must employ the best of both approaches. One recent proposal[21] examines
the ideas of a "federated" architecture based on process support through the concept of
environment services. In this way, the distinction between a "tool" and a "framework
service" is dissolved. Instead, users request services that are provided by the environment.
Details of tools and framework are hidden below. While more work is clearly required to
fully validate such an approach, it does seem an attractive way to ensure that the strengths
of both IPSE and CASE technology are preserved in future systems.

In summary, we see that a need to better understand IPSE user requirements remains, ideally
before embarking on further large, expensive system developments. Arguably, we are still not in
a position to make such a complete and detailed analysis of IPSE user requirements. However.
as happens in the development of any large, complex system, requirements analysis and design
proceed hand-in-hand, with the results of partial designs and implementations feeding directly
into further requirements elicitation and analysis activities. This leads us to believe that require-
merits analysis for IPSEs, together with the design and development of IPSE mechanisms., munt
take place in parallel, using the requirements to evaluate the designs, and the designs as the
basis for elicitation of further IPSE requirements. Approaches aimed at combining the strengths
of both IPSE and CASE technology seem an attractive way forward.

CM U /SEI-91-TR-29 17

18 CM T/S EI-91- T R-29

Chapter 6

Summary

In this paper we have tried to summarize some of the main issues currently of concern to IPSE
workers by looking towards the future of IPSEs and IPSE technology and identifying some of
the likely key areas.

IPSE research has been successful iA a number of important ways. In particular, there have
been great advances in understanding aspects of the technology required to support software
development. This has had repercussions in other areas of software engineering. Interest in
object-oriented databases, for example, has been spurred on by the evolving knowledge of the
necessary data support mechanisms for an IPSE[4].

However, while it is clear that there have been great advances since the seminal work of the
early 1980's described in the Stoneman report, there is stili a long way to go. Our main hope
is that the relative lack of success does not obscure the many great advances in understanding
that have been made in the past decade. In particular, we should see the main success of the
work as helping us to re-focus our attention on the issues which are important for the future
- understanding the nature and requirement of IPSE users, the importance of a knowledge
of the development process to software production, and an emphasis on getting the best out
of available technology to improve future development. The proposals made in this paper have
been constructed with the aim of ensuring that future work builds on these successes.

The 1990's should prove an interesting and exciting time for IPSE workers, with many major
issues still to be tackled. Perhaps after all this time, following a great deal of exploration, we
are only just beginning to understand some of the issues that must be addressed in this work,
and the important questions that remain to be answered. In fact, we can now perhaps claim no
more than to "know the place for the first time".

CMU/SEI-91-TR-29 19

Acknowledgements

Many of the ideas reported in this paper have benefited from discussions with John McDermid

at the University of York, and Anthony Earl at Hewlett-Packard Labs in Bristol.

Earlier drafts of this paper were improved through the advice of colleagues at the SEI, notably

Larry Druffel, Bob Ellison, Peter Feiler, Dennis Smith, and Kurt Wallnau, and fcllowing com-

ments from Tricia Oberndorf of NADC. Dick Martin at the SEI helped with some of the figures

,iuoted.

My thanks also to Peter Hitchcock for the T.S. Eliot quotation!

20 CMU/SEI-91-TR-29

Bibliography

[1] P.A. Bernstein. Database System Support for Software Engineering. Proceedings of the 9th
International Conference on Software Engineering, pages 166-179, March 1987.

[2] M.F. Bott, editor. ECLIPSE - An Integrated Project Support Environment. Peter Peregri-
nus, 1989.

[3] A.W. Brown. Database Support for Software Engineering. Chapman and Hall, 1990.

[4] A.W. Brown. Object-Oriented Databases and their Application to Software Engineering.
McGraw-Hill, 1991.

[5] A.W. Brown and J.A. McDermid. On Integration and Reuse in a Software Development
Environment. In Fred Long and Mike Tedd, editors, Software Engineering Environments
'91. Ellis Horwood, 1991.

[6] J.N. Buxton. Requirements for APSE - Stoneman. U.S. Department of Defence, February
1980.

[7] J.N. Buxton and L.E. Druffel. Requirements for an Ada Programming Support Envi-
ronment: Rationale for Stoneman. In Proceedings of COMPSAC 80, pages 66-72. IEEE
Computer Society Press, October 1980.

[8] M. Dowson. ISTAR - An Integrated Project Support Environment. Proceedings of 2nd
SIGSOFT/SIGPLAN Symposium on Practical Software Development Environments, pages
27-33, December 1986.

[9] A.N. Earl and R.P. Whittington. Capturing the Semantics of an IPSE Database - Problems.
Solutions and an Example. Data Processing, 27(9), November 1985.

[10] ECMA. A Reference Model for Computer-Assisted Software Engineering Environments.
ECMA Report Number TR/55, January 1991.

(I11] GIE Emeraude, Selenia, and Software Sciences. Requirements and Design Criteria for Tool
Interfaces (EURAC), 1987.

[12] F. Gallo, R. Minot, and I. Thomas. The Object Management System of PCTE as a Soft-
ware Engineering Database Management System. Proceedings of 2nd SIGSOFT/SIGPLAN
Symposium on Practical Software Development Environments, pages 12-15, December 1986.

CMU/SEI-91-TR-29 21

[131 A. Gilles. Conference Report. Information and Software Technology, 33(2), March 1991.

[14] W.S. Humphrey. Managing the Software Process. Addison-Wesley, 1989.

[15] Yard Ltd. Proceedings of the PCIS Workshop. June 1991.

[16] US Department of Defense. Requirements and Design Criteria for the Common APSE
Interface Set, 1986.

[17] C. Price. SAFRA - A Debrief Report. NCC Publications, 1987.

[18] R.A. Snowdon. A Brief Overview of the IPSE2.5 Project. Ada User, 9(4):156-161, 1988.

[19] R.N. Taylor and Others. Foundations for the arcadia environment architecture. ACAI
SIGPLAN Notices, 24(2):1-13, February 1989.

[20] I. Thomas and B. Nejmah. Tool Integration in a Software Engineering Environments.
Technical Report SESD-91-11 Revision 1.1, lewlett-Packard. June 1991.

[211 K.C. Wallnau and P.H. Feiler. Evolving Towards Federated, Services-Based CASE Envi-
ronments. Submitted for publication, June 1991.

[22] A. Wasserman. Tool Integration in Software Engineering Environments. In F. Long, editor,
Software Engineering Environments, number 467 in Lecture Notes in Computer Science,
pages 138-150. Springer-Verlag, 1990.

22 CMU/SEI-91-TR-29

REPORT DOCUMENTATION PAGE
ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

Zb. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91 -TR-29 ESD-91 -TR-29

6a. NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING 8 Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATIONj (if pplicable) F1962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63756E N/A N/A N/A
11 . TITLE (Include Secuity Classification)

A Critical Review of the Current State of IPSE Technology
12. PERSONAL AUTHOR(S)

Alan W. Brown
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

Final IFROM TOOctober 1991 22 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. IPSE

Integrated Project Support Environment
Software Environments Environments

19. ABSTRACT (Continue on rev=re f necssary and identify by block number)

In the past ten years, there has been a great deal of interest in the concept of an Integrated Project Support
Environment (IPSE) as a complete, unifying framework of services supporting most (or all) phases of software
development and maintenance. In this report, we evaluate the current state of research work in this area,
suggest some reasons for the relative lack of success, and make proposals for ensuring measured progress
in the future.

(please turn over)

20. DISTRIBUTION/AVAILABIUTrY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDIUNTMITED SAME AS RYTD'IC USERS1 Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

Charles J. Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEI)

S TRACT --ca.Iunued from pagp one. block 19

